ROP Interactive Partners are Involved in the Control of Cell Division Patterns in Arabidopsis Leaves.
Qimuge HasiTatsuo KakimotoPublished in: Plant & cell physiology (2022)
Animal Rho GTP-binding proteins and their plant counterparts, Rho of plants (ROPs), regulate cell polarity, but they do so through different effector proteins. A class of ROP effectors, interactor of constitutive active ROPs (ICRs)/ROP interactive partners (RIPs), has been implicated in diverse biological processes; however, there are limited analyses of RIP loss-of-function mutants. Here, we report an analysis of the functions of the Arabidopsis thaliana RIPs in the leaf epidermis. Green Fluorescent Protein (GFP) fusion proteins of all the RIPs colocalized to cortical microtubules. RIP1, RIP3 and RIP4, but not RIP2 and RIP5, colocalized with the preprophase band (PPB), spindles and phragmoplasts. RIP2 and RIP5 did not colocalize with the PPB, spindles or phragmoplasts even when they were expressed under a promoter active in proliferative cells, indicating that there are differences among RIP protein properties. The overexpression of RIP1 or RIP4 resulted in the fragmentation of cortical microtubules, and the rip1 2 3 4 5 quintuple mutant showed increased growth rate of microtubules at their plus ends compared with the wild type. The rip1 2 3 4 5 mutant leaves and petals were narrow, which was explained by the decreased cell number along the transverse axis compared with that of the wild type. The rip1 2 3 4 5 mutant leaf epidermis possessed fewer PPBs oriented close to the long axis of the leaf compared with wild type, indicating the involvement of RIPs in cell division plane regulation and leaf shape determination.