Neisseria meningitidis Serogroup C Clonal Complex 10217 Outbreak in West Kpendjal Prefecture, Togo 2019.
Alicia R FeaginsAdodo Yao SadjiNadav TopazMark ItskoJacqueline Wemboo Afiwa HalatokoAlessou DzokaJoseph LabiteYao KataSylvain GomezKomlan KossiHamadi AssaneChristelle Nikiema-PessinabaRyan NovakHenju MarjukiXin WangPublished in: Microbiology spectrum (2022)
Togo has reported seasonal meningitis outbreaks caused by non-Neisseria meningitidis serogroup A (NmA) pathogens since the introduction of meningococcal serogroup A conjugate vaccine (MACV, MenAfriVac) in 2014. From 2016 to 2017, NmW caused several outbreaks. In early 2019, a NmC outbreak was detected in the Savanes region of Togo and its investigation is described here. Under case-based surveillance, epidemiological and clinical data, and cerebrospinal fluid specimens were collected for every suspected case of meningitis. Specimens were tested for meningitis pathogens using confirmatory microbiological and molecular methods. During epidemic weeks 9 to 15, 199 cases were reported, with 179 specimens being available for testing and 174 specimens (97.2%) were tested by at least one confirmatory method. The NmC was the predominant pathogen confirmed (93.9%), belonging to sequence type (ST)-9367 of clonal complex (CC) 10217. All NmC cases were localized to the West Kpendjal district of the Savanes region with attack rates ranging from 4.1 to 18.8 per 100,000 population and case fatality rates ranging up to 2.2% during weeks 9 to 15. Of the 93 NmC confirmed cases, 63.4% were males and 88.2% were in the 5 to 29 age group. This is the first report of a NmC meningitis outbreak in Togo. The changing epidemiology of bacterial meningitis in the meningitis belt post-MACV highlights the importance of monitoring of emerging strain and country preparedness for outbreaks in the region. IMPORTANCE The recent emergence of an invasive NmC strain in Togo is an example of the changing bacterial meningitis epidemiology in the meningitis belt post-MACV. The current epidemiology includes the regional circulation of various non-NmA serogroups, which emphasizes the need for effective molecular surveillance, laboratory diagnosis, and a multivalent vaccine that is effective against all serogroups in circulation.