Login / Signup

Unique MicroRNA and mRNA Interactions in EGFR-Mutated Lung Adenocarcinoma.

Sophia SubatKentaro InamuraHironori NinomiyaHiroko NaganoSakae OkumuraYuichi Ishikawa
Published in: Journal of clinical medicine (2018)
The EGFR gene was one of the first molecules to be selected for targeted gene therapy. EGFR-mutated lung adenocarcinoma, which is responsive to EGFR inhibitors, is characterized by a distinct oncogenic pathway in which unique microRNA (miRNA)⁻mRNA interactions have been observed. However, little information is available about the miRNA⁻mRNA regulatory network involved. Both miRNA and mRNA expression profiles were investigated using microarrays in 155 surgically resected specimens of lung adenocarcinoma with a known EGFR mutation status (52 mutated and 103 wild-type cases). An integrative analysis of the data was performed to identify the unique miRNA⁻mRNA regulatory network in EGFR-mutated lung adenocarcinoma. Expression profiling of miRNAs and mRNAs yielded characteristic miRNA/mRNA signatures (19 miRNAs/431 mRNAs) in EGFR-mutated lung adenocarcinoma. Five of the 19 miRNAs were previously listed as EGFR-mutation-specific miRNAs (i.e., miR-532-3p, miR-500a-3p, miR-224-5p, miR-502-3p, and miR-532-5p). An integrative analysis of miRNA and mRNA expression revealed a refined list of putative miRNA⁻mRNA interactions, of which 63 were potentially involved in EGFR-mutated tumors. Network structural analysis provided a comprehensive view of the complex miRNA⁻mRNA interactions in EGFR-mutated lung adenocarcinoma, including DUSP4 and MUC4 axes. Overall, this observational study provides insight into the unique miRNA⁻mRNA regulatory network present in EGFR-mutated tumors. Our findings, if validated, would inform future research examining the interplay of miRNAs and mRNAs in EGFR-mutated lung adenocarcinoma.
Keyphrases