Enhanced isobutanol production using engineered E. coli and B. subtilis host by UV-induced mutation.
Seo Yeong KimKwon-Young ChoiPublished in: 3 Biotech (2022)
Recombinant Escherichia coli and Bacillus subtilis strains were engineered by simultaneous chemical and ultraviolet-induced random mutagenesis to enhance bio-alcohol production. Our study investigated the bio-alcohol production of six variants of E. coli (EM1-6) and B. subtilis mutants (BM1-6). The induced mutation in the EM variants increased isobutanol (C4 alcohol) production most effectively, whereas pH adjustment and additional l-valine feeding increased isobutanol production by the BM variants. In contrast, pH adjustment or l-valine addition negatively affected isobutanol production by the EM variants. The highest titer of 5.07 g/L of isobutanol from a 40 g/L yeast extract medium (YEM) was achieved by the EM1 variant, whereas 0.57 g/L of isobutanol from YEM supplemented with 5 g/L of l-valine was obtained from the BM5 variant. These results can be applied in further research on engineering production hosts and improving production titers to utilize heterogenous bioresources in the future.