Login / Signup

Influence of Nitrogen-Doped Carbon Dots on H • Radical-Mediated Au-H Formation in the Hydrogenation of 4-Nitrophenol Using NCDs-Au Nanohybrids.

Imran MondalDipanjan SamantaMd Abdus Salam ShaikManisha ShawAngana BhattacharyaRajarshi BasuAmita Pathak
Published in: Langmuir : the ACS journal of surfaces and colloids (2024)
The hydrogenation of 4-nitrophenol using carbon dot-stabilized gold (Au) nanoparticles is well-studied, with Au-H species known to catalyze the reaction. However, the impact of specific nitrogen moieties in nitrogen-doped carbon dots on Au-H formation and catalytic activity remains unexplored. These nitrogen species, acting as surface ligands, may influence the catalytic properties through the generation of Au-H species via H • radicals. In this regard, modulation of the catalytic properties of Au nanoparticles has been explored by conjugating their surface with nitrogen-doped carbon dots (NCDs). Three distinct nanohybrid formulations comprising NCDs and Au nanoparticles (i.e., NCDs-Au) have been prepared, where the NCDs were derived from different carbon sources (e.g., citric acid and l-malic acid) and varying mole ratios of the nitrogen source (i.e., urea). The impact of NCDs on Au nanoparticle-mediated catalysis has been investigated using the model reaction of hydrogenation of 4-nitrophenol (4-NP) in the presence of NaBH 4 . The fractions of different nitrogen species (such as pyrrolic, pyridinic, and amidic) in the different NCDs-Au nanohybrids were quantified through XPS analysis, and their roles in catalytic performance have been studied. Further, the size, shape, crystallinity, defects, and exposed facets of the NCDs-Au nanohybrids have also been assessed (through XRD, HRTEM, and Raman studies), and their structure-activity relationships have been corroborated. The hydrogenation of 4-NP is proposed to happen through the formation of gold-hydride (Au-H) species facilitated by H • radicals, as confirmed by EPR analysis. The NCDs-Au nanohybrid, synthesized from NCDs derived from a 1:3 molar ratio of l-malic acid and urea (MU13-Au), exhibits superior catalytic efficiency with a rate constant of 1.013 min -1 , attributed to its abundant defects and a notably high relative content of catalytically favorable pyridinic nitrogen species compared to other tested nanohybrids.
Keyphrases
  • reduced graphene oxide
  • sensitive detection
  • gold nanoparticles
  • visible light
  • data analysis
  • case control