Login / Signup

Looks like home: numerosity, but not spatial frequency guides preference in zebrafish larvae (Danio rerio).

Elisabeth AdamMirko ZanonAndrea MessinaGiorgio Vallortigara
Published in: Animal cognition (2024)
Despite their young age, zebrafish larvae have a well-developed visual system and can distinguish between different visual stimuli. First, we investigated if the first visual surroundings the larvae experience during the first days after hatching shape their habitat preference. Indeed, these animals seem to "imprint" on the first surroundings they see and select visual stimuli accordingly at 7 days post fertilization (dpf). In particular, if zebrafish larvae experience a bar background just after hatching, they later on prefer bars over white stimuli, and vice versa. We then used this acquired preference for bars to investigate innate numerical abilities. We wanted to specifically test if the zebrafish larvae show real numerical abilities or if they rely on a lower-level mechanism-i.e. spatial frequency-to discriminate between two different numerosities. When we matched the spatial frequency in stimuli with different numbers of bars, the larvae reliably selected the higher numerosity. A previous study has ruled out that 7 dpf zebrafish larvae use convex hull, cumulative surface area and density to choose between two numerosities. Therefore, our results indicate that zebrafish larvae rely on real numerical abilities rather than other cues, including spatial frequency, when spontaneously comparing two sets with different numbers of bars.
Keyphrases
  • aedes aegypti
  • drosophila melanogaster
  • immune response
  • zika virus
  • climate change