Login / Signup

A carbon nanotube x-ray source array designed for a new multisource cone beam computed tomography scanner.

Boyuan LiChristina R InscoeShuang XuTimothy CapoDonald A TyndallYueh Z LeeJianping LuOtto Zhou
Published in: Physics in medicine and biology (2024)
Cone beam computed tomography (CBCT) is known to suffer from strong scatter and cone beam artifacts. The purpose of this study is to develop and characterize a rapidly scanning carbon nanotube (CNT) field emission x-ray source array to enable a multisource CBCT (ms-CBCT) image acquisition scheme which has been demonstrated to overcome these limitations. A CNT x-ray source array with eight evenly spaced focal spots was designed and fabricated for a medium field of view ms-CBCT for maxillofacial imaging. An external multisource collimator was used to confine the radiation from each focal spot to a narrow cone angle. For ms-CBCT imaging, the array was placed in the axial direction and rapidly scanned while rotating continuously around the object with a flat panel detector. The x-ray beam profile, temporal and spatial resolutions, energy and dose rate were characterized and evaluated for maxillofacial imaging. The CNT x-ray source array achieved a consistent focal spot size of 1.10 ± 0.04 mm × 0.84 ± 0.03 mm and individual beam cone angle of 2.4°±0.08 after collimation. The x-ray beams were rapidly switched with a rising and damping times of 0.21 ms and 0.19 ms, respectively. Under the designed operating condition of 110 kVp and 15 mA, a dose rate of 8245 μ Gy s -1 was obtained at the detector surface with the inherent Al filtration and 2312 μ Gy s -1 with an additional 0.3 mm Cu filter. There was negligible change of the x-ray dose rate over many operating cycles. A ms-CBCT scan of an adult head phantom was completed in 14.4 s total exposure time for the imaging dose in the range of that of a clinical CBCT scanner. A spatially distributed CNT x-ray source array was designed and fabricated. It has enabled a new multisource CBCT to overcome some of the main inherent limitations of the conventional CBCT.
Keyphrases