3D-Printed Composite Bioceramic Scaffolds for Bone and Cartilage Integrated Regeneration.
Nanjian XuDezhi LuLei QiangYihao LiuDalin YinZhiyong WangYongxiang LuoChen YangZhenjiang MaHui MaJin-Wu WangPublished in: ACS omega (2023)
Osteoarthritis may result in both cartilage and subchondral bone damage. It is a significant challenge to simultaneously repair cartilage due to the distinct biological properties between cartilage and bone. Here, strontium copper tetrasilicate/β-tricalcium phosphate (Wesselsite[SrCuSi 4 O 10 ]/Ca 3 (PO 4 ) 2 , WES-TCP) composite scaffolds with different WES contents (1, 2, and 4 wt %) were fabricated via a three-dimensional (3D) printing method for the osteochondral regeneration. The physicochemical properties and biological activities of the scaffolds were systematically investigated. 2WES-TCP (WES-TCP with 2 wt % WES) composite scaffolds not only improved the compressive strength but also enhanced the proliferation of both rabbit bone mesenchymal stem cells (rBMSCs) and chondrocytes, as well as their differentiation. The in vivo study further confirmed that WES-TCP scaffolds significantly promoted the regeneration of both bone and cartilage tissue in rabbit osteochondral defects compared with pure TCP scaffolds owing to the sustained and controlled release of bioactive ions (Si, Cu, and Sr) from bioactive scaffolds. These results show that 3D-printed WES-TCP scaffolds with bilineage bioactivities take full advantage of the bifunctional properties of bioceramics to reconstruct the complex osteochondral interface, which broadens the approach to engineering therapeutic platforms for biomedical applications.