Login / Signup

A Novel α4/7-Conotoxin QuIA Selectively Inhibits α3β2 and α6/α3β4 Nicotinic Acetylcholine Receptor Subtypes with High Efficacy.

Liujun WangXixi WuXiaopeng ZhuDongting ZhangsunYong WuSu-Lan Luo
Published in: Marine drugs (2022)
α6β4 nAChR is expressed in the peripheral and central nervous systems and is associated with pain, addiction, and movement disorders. Natural α-conotoxins (α-CTxs) can effectively block different nAChR subtypes with higher efficacy and selectivity. However, the research on α6β4 nAChR is relatively poor, partly because of the lack of available target-specific α-CTxs. In this study, we synthesized a novel α-4/7 conotoxin QuIA that was found from Conus quercinus . We investigated the efficacy of this peptide to different nAChR subtypes using a two-electrode voltage-clamp technique. Remarkably, we found α-QuIA inhibited the neuronal α3β2 and α6/α3β4 nAChR subtypes with significantly high affinity (IC 50 was 55.7 nM and 90.68 nM, respectively), and did not block other nAChR subtypes even at a high concentration of 10 μM. In contrast, most α-CTxs have been determined so far to effectively block the α6/α3β4 nAChR subtype while also maintaining a similar higher efficacy against the closely related α6β2β3 and/or α3β4 subtypes, which are different from QuIA. In conclusion, α-QuIA is a novel α4/7-CTx, which has the potential to develop as an effective neuropharmacology tool to detect the function of α6β4 nAChR.
Keyphrases
  • magnetic resonance
  • chronic pain
  • photodynamic therapy
  • pain management
  • high resolution
  • climate change
  • blood brain barrier
  • human health
  • cerebral ischemia
  • postoperative pain