Login / Signup

Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen.

Won-Jin KwakHun KimYann K PetitChristian LeypoldTrung Thien NguyenNika MahnePaul RedfernLarry A CurtissHun-Gi JungSergey M BorisovStefan A FreunbergerYang-Kook Sun
Published in: Nature communications (2019)
Non-aqueous lithium-oxygen batteries cycle by forming lithium peroxide during discharge and oxidizing it during recharge. The significant problem of oxidizing the solid insulating lithium peroxide can greatly be facilitated by incorporating redox mediators that shuttle electron-holes between the porous substrate and lithium peroxide. Redox mediator stability is thus key for energy efficiency, reversibility, and cycle life. However, the gradual deactivation of redox mediators during repeated cycling has not conclusively been explained. Here, we show that organic redox mediators are predominantly decomposed by singlet oxygen that forms during cycling. Their reaction with superoxide, previously assumed to mainly trigger their degradation, peroxide, and dioxygen, is orders of magnitude slower in comparison. The reduced form of the mediator is markedly more reactive towards singlet oxygen than the oxidized form, from which we derive reaction mechanisms supported by density functional theory calculations. Redox mediators must thus be designed for stability against singlet oxygen.
Keyphrases
  • solid state
  • density functional theory
  • electron transfer
  • molecular dynamics
  • hydrogen peroxide
  • high intensity
  • quantum dots
  • african american
  • solar cells