Buckling versus unilateral constraint for a multistable metamaterial element.
N HimaDavide BigoniFrancesco Dal CorsoPublished in: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences (2022)
A structural element is designed and investigated, forming the basis for the development of an elastic multistable metamaterial. The leitmotif of the structural design is the implementation of a strut characterized by a bifurcation occurring at either vanishing tensile or compressive load. It is shown that buckling at null load leads to a mechanical equivalence with a unilateral constraint formulation, introducing shocks in dynamics. Towards a future analysis of the latter, the nonlinear quasi-static response is investigated, showing the multistable character of the structure, which may appear as bistable or tetrastable. This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 1)'.