Login / Signup

Cs-Lattice Extension and Expansion for Inducing Secondary Growth of CsPbBr3 Perovskite Nanocrystals.

Sumit Kumar DuttaSuman BeraRakesh Kumar BeheraBiswajit HudaitNarayan Pradhan
Published in: ACS nano (2021)
The increase of the stability of perovskite nanocrystals with respect to exposure to polar media, layers growth, or shelling with different materials is in demand. While these are widely studied for metal chalcogenide nanocrystals, it has yet to be explored for perovskite nanocrystals. Even growth of a single monolayer on any facet or on the entire surface of these nanocrystals could not be established yet. To address this, herein, a secondary growth approach leading to creation of a secondary lattice with subsequent expansion on preformed CsPbBr3 perovskite nanocrystals is reported. As direct layer growth by adding precursors was not successful, Cs-lattice extension to preformed CsPbBr3 nanocrystals was performed by coupling CsBr to these nanocrystals. Opening both {110}/{002} and {200} facets of parent CsPbBr3 nanocrystals, CsBr was observed to be connected with lattice matching to the {200} facets. Further with Pb(II) incorporation, the Cs-sublattices of CsBr were expanded to CsPbBr3 and led to cube-couple nanocrystals. However, as cubes in these nanostructures were differently oriented, these showed lattice mismatch at their junctions. This lattice mismatch though restricted complete shelling but successfully favored the secondary growth on specific facets of parent CsPbBr3 nanocrystals. Details of this secondary growth via lattice extension and expansion are microscopically analyzed and reported. These results further suggest that lead halide perovskite nanocrystals can be epitaxially grown under proper reaction design and more complex as well as heterostructures of these materials can be fabricated to meet the current demands.
Keyphrases
  • room temperature
  • energy transfer
  • ionic liquid
  • solar cells
  • risk assessment
  • heavy metals