Gd-/CuS-Loaded Functional Nanogels for MR/PA Imaging-Guided Tumor-Targeted Photothermal Therapy.
Changchang ZhangWenjie SunYue WangFang XuJiao QuJindong XiaXiangyang ShiXiangyang ShiPublished in: ACS applied materials & interfaces (2020)
The second near-infrared (NIR-II, 1000-1700 nm) light-based diagnosis and therapy have received extensive attention for neoplastic disease treatments because of the fact that light in the NIR-II window possesses less photon scattering along with deeper tissue penetration than that in the NIR-I (700-950 nm) window. Herein, we present a Gd- and copper sulfide (CuS)-integrated nanogel (NG) platform for magnetic resonance (MR)/photoacoustic (PA) imaging-guided tumor-targeted photothermal therapy (PTT). In our approach, we prepared cross-linked polyethylenimine (PEI) NGs via an inverse emulsion method, modified the PEI NGs with Gd chelates, targeting ligand folic acid (FA) through a polyethylene glycol (PEG) spacer and 1,3-propanesultone, and finally loaded CuS nanoparticles (NPs) within the functional NGs. The as-synthesized Gd/CuS@PEI-FA-PS NGs with a mean size of 85 nm exhibit a good water dispersibility and protein resistance property, admirable r1 relaxivity (11.66 mM-1 s-1), excellent NIR-II absorption feature, high photothermal conversion efficiency (26.7%), and FA-mediated targeting specificity to cancer cells overexpressing FA receptor (FAR). With these properties along with the good cytocompatibility, the developed Gd/CuS@PEI-FA-PS NGs enable MR/PA dual-mode imaging-guided targeted PTT of FAR-overexpressing tumors under the irradiation of an NIR-II (1064 nm) laser. The designed Gd/CuS@PEI-FA-PS NGs may be used as a promising theranostic agent for MR/PA dual-mode imaging-guided PTT of other FAR-expressing tumors.
Keyphrases
- photodynamic therapy
- fluorescence imaging
- cancer therapy
- magnetic resonance
- high resolution
- drug delivery
- drug release
- contrast enhanced
- fluorescent probe
- machine learning
- stem cells
- computed tomography
- mass spectrometry
- living cells
- oxide nanoparticles
- replacement therapy
- single cell
- wound healing
- high throughput
- single molecule
- smoking cessation