Most of the known chemiluminescence (CL) systems are flash-type, whereas a CL system with long-lasting and strong emission is very favorable for accurate CL quantitative analysis and imaging assays. In this work, we found that the oxidized g-C3N4 (g-CNOX) could trigger luminol-H2O2 to produce a long-lasting and intense CL emission. The CL emission lasted for over 10 min and could be observed by the naked eye in a dark room. By means of a CL spectrum, X-ray photoelectron spectra, and electron spin resonance spectra, the possible mechanism of this CL reaction was proposed. This strong and long-duration CL emission was attributed to the high catalytic activity of g-CNOX nanosheets and continuous generation of reactive oxygen species from H2O2 on g-CNOX surface. Taking full advantage of the long-lasting CL property of this system, we proposed one "non-in-situ mixing" mode of CL measurement. Compared with the traditional "in-situ mixing" CL measurement mode, this measurement mode was convenient to operate and had good reproducibility. This work not only provides a long-lasting CL reaction but also deepens the understanding of the structure and properties of g-C3N4 material.