Login / Signup

Heat shock during in vitro maturation of bovine oocytes disturbs bta-miR-19b and DROSHA transcripts abundance after in vitro fertilization.

Vanessa das Graças Pereira de SouzaGustavo Torres de SouzaDiana Rangel de LemosJudith Maria de Oliveira GuimarãesCarolina Capobiango Romano QuintãoMichele MunkNaiara Zoccal SaraivaLuiz Sérgio de Almeida Camargo
Published in: Reproduction in domestic animals = Zuchthygiene (2021)
While microRNAs (miRNAs) are a class of non-coding RNAs important for embryo development, the relationship between them and heat stress during oocyte maturation has not yet been established. This study investigated the effect of heat shock during in vitro maturation (IVM) on the abundance of bta-miR-20a, -27b, -103, -21-5p, -19b, -1246 miRNAs and DROSHA and DICER1 mRNAs, previously reported for being involved in oocyte maturation, response to heat stress and miRNA biogenesis. Oocytes were exposed for 12h to heat shock during IVM, fertilized in vitro and the presumptive zygotes cultured for eight days. The relative quantification of miRNAs and mRNAs was performed by real-time PCR in vitro-matured oocytes and 8-cell stage embryos. Progression of meiosis, embryonic development and apoptotic indices was also evaluated. Heat shock compromised (p < .05) oocyte nuclear maturation, cleavage and embryo development, with a higher (p < .05) embryonic apoptotic index than the control group. The abundance of bta-miR-19b increased (p < .05) whereas the abundance of DROSHA transcripts decreased (p < .05) in embryos derived from heat-shocked oocytes. In conclusion, heat shock during IVM influences the abundance of bta-miR-19b and DROSHA in pre-implantation embryos, indicating a persistent effect of heat shock that can be associated with impaired embryo development.
Keyphrases