Multimodality Fusion Strategies in Eye Disease Diagnosis.
Sara El-AteifAli IdriPublished in: Journal of imaging informatics in medicine (2024)
Multimodality fusion has gained significance in medical applications, particularly in diagnosing challenging diseases like eye diseases, notably diabetic eye diseases that pose risks of vision loss and blindness. Mono-modality eye disease diagnosis proves difficult, often missing crucial disease indicators. In response, researchers advocate multimodality-based approaches to enhance diagnostics. This study is a unique exploration, evaluating three multimodality fusion strategies-early, joint, and late-in conjunction with state-of-the-art convolutional neural network models for automated eye disease binary detection across three datasets: fundus fluorescein angiography, macula, and combination of digital retinal images for vessel extraction, structured analysis of the retina, and high-resolution fundus. Findings reveal the efficacy of each fusion strategy: type 0 early fusion with DenseNet121 achieves an impressive 99.45% average accuracy. InceptionResNetV2 emerges as the top-performing joint fusion architecture with an average accuracy of 99.58%. Late fusion ResNet50V2 achieves a perfect score of 100% across all metrics, surpassing both early and joint fusion. Comparative analysis demonstrates that late fusion ResNet50V2 matches the accuracy of state-of-the-art feature-level fusion model for multiview learning. In conclusion, this study substantiates late fusion as the optimal strategy for eye disease diagnosis compared to early and joint fusion, showcasing its superiority in leveraging multimodal information.
Keyphrases
- convolutional neural network
- deep learning
- type diabetes
- high resolution
- optical coherence tomography
- machine learning
- gene expression
- diabetic retinopathy
- computed tomography
- mass spectrometry
- high throughput
- pain management
- chronic pain
- ionic liquid
- liquid chromatography
- genome wide
- risk assessment
- wound healing
- rna seq