Login / Signup

Parthenogenesis is rare in the reproduction of a sexual field population of the isogamous brown alga Scytosiphon (Scytosiphonaceae, Ectocarpales).

Masakazu HoshinoKazuhiro Kogame
Published in: Journal of phycology (2019)
Parthenogenetic development of unfused gametes is commonly observed in laboratory cultures among various brown algal taxa. There is, however, little information on the contribution of parthenogenesis to the reproduction of field populations. In this study, we investigated whether parthenogenesis is present in a sexual population of the isogamous brown alga Scytosiphon with a 1:1 sex ratio. In culture, both female and male gametes showed higher mortality and slower development compared to zygotes. More than 90% of surviving partheno-germlings formed parthenosporophytes irrespective of the culture conditions tested. Therefore, if parthenogenesis occurs in the field, most unfused gametes are expected to form parthenosporophytes. Contrary to this expectation, parthenosporophytes were rare in the field population. We collected 126 sporophytic thalli and isolated and cultured a unilocular sporangium from each of them. We confirmed that cultures of 120 unilocular sporangia produced both female and male gametophytes by the observation of zygotes or amplification of PCR-based sex markers indicating that these sporangia originated from zygotic sporophytes. Only females were detected in cultures from two sporangia and only males from four sporangia suggesting that these sporangia originated from parthenosporophytes. In the Scytosiphon population, although parthenogenesis is observable in culture, our results demonstrate that the contribution of parthenogenesis to reproduction is small (≤4.8%) compared to sexual reproduction. Unfused gametes may not survive to form mature parthenosporophytes in significant numbers in the field partly due to their higher mortality and slower development compared from zygotes.
Keyphrases
  • mental health
  • cardiovascular events
  • risk factors
  • type diabetes