Login / Signup

Role of aerobic physical training on cardiac autonomic and morphophysiological dysfunction in hypertensive rats subjected to ovarian hormone deprivation.

B R O RossiStella Vieira PhilboisK D MaidaJuan Carlos Sánchez-DelgadoAna Catarine VeigaHugo Celso Dutra de Souza
Published in: Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas (2022)
Here we investigated the effects of physical training on cardiovascular autonomic control and cardiac morphofunctional parameters in spontaneously hypertensive rats (SHRs) subjected to ovarian hormone deprivation. Forty-eight 10-week-old SHRs were divided into two groups: ovariectomized (OVX, n=24) and sham (SHAM, n=24). Half of each group (n=12) was trained by swimming for 12 weeks (OVX-T and SHAM-T). Cardiac morphology and functionality were assessed using echocardiography, and autonomic parameters were assessed using double pharmacological autonomic block, baroreflex sensitivity (BRS), and analyses of heart rate variability (HRV) and blood pressure variability (BPV). Ovariectomy did not influence the cardiac autonomic tonus balance unlike physical training, which favored greater participation of the vagal autonomic tonus. Ovariectomy and aerobic physical training did not modify HRV and BRS, unlike BPV, for which both methods reduced low-frequency oscillations, suggesting a reduction in sympathetic vascular modulation. Untrained ovariectomized animals showed a reduced relative wall thickness (RWT) and increased diastolic and systolic volumes and left ventricular diameters, resulting in increased stroke volume. Trained ovariectomized animals presented reduced posterior wall thickness and RWT as well as increased final diastolic diameter, left ventricular mass, and stroke volume. Ovarian hormone deprivation in SHRs promoted morphofunctional adaptations but did not alter the evaluation of cardiac autonomic parameters. In turn, aerobic physical training contributed to a more favorable cardiac autonomic balance to the vagal autonomic component and promoted morphological adaptations but had little effect on cardiac functionality.
Keyphrases