Login / Signup

A novel role for acid-sensing ion channels in Pavlovian reward conditioning.

Ali GhobbehRebecca J Taugher-HeblSyed M AlamRong FanRyan T LaLumiereJohn A Wemmie
Published in: Genes, brain, and behavior (2018)
Pavlovian fear conditioning has been shown to depend on acid-sensing ion channel-1A (ASIC1A); however, it is unknown whether conditioning to rewarding stimuli also depends on ASIC1A. Here, we tested the hypothesis that ASIC1A contributes to Pavlovian conditioning to a non-drug reward. We found effects of ASIC1A disruption depended on the relationship between the conditional stimulus (CS) and the unconditional stimulus (US), which was varied between five experiments. In experiment 1, when the CS preceded the US signaling an upcoming reward, Asic1a-/- mice exhibited a deficit in conditioning compared to Asic1a+/+ mice. Alternatively, in experiment 2, when the CS coinitiated with the US and signaled immediate reward availability, the Asic1a-/- mice exhibited an increase in conditioned responses compared to Asic1a+/+ mice, which contrasted with the deficits in the first experiment. Furthermore, in experiments 3 and 4, when the CS partially overlapped in time with the US, or the CS was shortened and coinitiated with the US, the Asic1a-/- mice did not differ from control mice. The contrasting outcomes were likely because of differences in conditioning because in experiment 5 neither the Asic1a-/- nor Asic1a+/+ mice acquired conditioned responses when the CS and US were explicitly unpaired. Taken together, these results suggest that the effects of ASIC1A disruption on reward conditioning depend on the temporal relationship between the CS and US. Furthermore, these results suggest that ASIC1A plays a critical, yet nuanced role in Pavlovian conditioning. More research will be needed to deconstruct the roles of ASIC1A in these fundamental forms of learning and memory.
Keyphrases
  • high fat diet induced
  • emergency department
  • traumatic brain injury
  • type diabetes
  • insulin resistance
  • wild type
  • skeletal muscle