Open reduction and internal fixation (ORIF) is a surgical procedure performed with the objectives of restoring normal alignment and providing stability to broken bone fragments after a fracture. This procedure is increasingly used to treat fractures of the distal end of the radius. Reduction is achieved by the surgeon pulling and manipulating the hand while looking at real-time X-rays, and frequently requires large forces to distract impacted fragments from the proximal bone. This study presents the design and preliminary testing of a multi-degree-of-freedom (DOF) device capable of performing both distraction and reduction of fractured bone fragments using a traction splint mechanism with locking ball joints. A prototype was manufactured, and tests were conducted by a practicing hand surgeon. Both qualitative and quantitative tests using a phantom arm were performed. Quantitative force testing found an 80% reduction in the maximum force required to create needed traction, while qualitative tests with a hand surgeon found the device's ability to reduce and stabilize bone fragments while the hardware is secured to be more intuitive and less obstructive than existing techniques.