Programmed Self-Assembly of Protein-Coated AIE-Featured Nanoparticles with Dual Imaging and Targeted Therapy to Cancer Cells.
Jie LiMichelle M S LeeHaoxuan LiChen TongJianbin HuangYun YanDong WangBen-Zhong TangPublished in: ACS applied materials & interfaces (2020)
Modifying different functional moieties into one platform is a conventional strategy for constructing theranostic systems. However, this strategy usually suffers from the unsatisfied efficiency of each individual function. Herein, a programmed self-assembly strategy is presented to fabricate theranostic nanoparticles, which significantly exhibit a dual-modality imaging function involving fluorescence imaging and magnetic resource imaging (MRI), and an efficient targeted therapy to cancer cells. Fluorescent vesicles are first self-assembled by aggregation-induced emission (AIE)-active molecules. Gd3+, serving as an MRI agent, is subsequently bound to the vesicles to provide highly positive charges, which have been realized to be anticancer active. Thereafter, transferrin (Tf) protein is introduced onto the surface of Gd3+ coordinated vesicles, shielding the positive charges and making the nanoparticles nontoxic to cells. With the assistance of Tf protein, the constructed nanoparticles are specifically targeted to cancer cells. Moreover, Tf proteins further peel off from nanoparticles in lysosomes due to their charge reversion, resulting in highly positive charges and heavy toxicity of nanoparticles to kill cancer cells. In the nanoparticles, each of the functional components acts as double-sided adhesive tape to glue the next layer, so that the abilities of functional components are not compromised. This strategy holds great potential for theranostic nanomedicine.
Keyphrases
- fluorescence imaging
- photodynamic therapy
- high resolution
- magnetic resonance imaging
- walled carbon nanotubes
- living cells
- cell death
- protein protein
- induced apoptosis
- signaling pathway
- diffusion weighted imaging
- contrast enhanced
- high throughput
- mass spectrometry
- binding protein
- risk assessment
- climate change
- drug delivery
- cell proliferation
- human health
- amino acid
- molecularly imprinted
- pi k akt
- solid state