Login / Signup

Stepwise Coordination Assembly Approach toward Aluminum-Lanthanide-based Compounds.

San-Tai WangShu Hua ZhangWei-Hui FangJian Zhang
Published in: Inorganic chemistry (2020)
Present herein is a stepwise assembly method toward aluminum-lanthanide-based (Al-Ln) compounds. From the perspective of charge balance, polyanions are necessary to bind with Ln ions. However, the synthesis of polyanions aluminum compounds remains quite challenging. Herein, two Al4 polyanions [Al4(L)4(Cat)2]·4Hdma (AlOC-13, H3L= 2,3-dihydroxybenzoic acid, Cat = catechol, and dma = dimethylamine) and [Al4(L)4(HL)2(DMF)2]·4Hdma·0.5DMF·0.5H2O (AlOC-14, DMF = N,N-dimethylformamide) were successfully obtained under solvothermal conditions. Catechol and Hdma were generated from the in situ decarboxylation of H3L ligand and decomposition of DMF, respectively. AlOC-13 is qualified for further coordination assembly for the available vacancy coordination sites, good water solubility, and scale-up synthesis. The assembly of Al4 polyanions with equivalent Ln ions afforded a series of zigzag chain structures [LnAl4(L)4(Cat)2(DMF)2(H2O)3]·Hdma (Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) (AlOC-13-Ln). Moreover, the magnetic behavior and photoluminescence of the series of AlOC-13-Ln were also studied. AlOC-13-Dy shows obvious antiferromagnetic behavior, while AlOC-13-Tb exhibits excellent green characteristic luminescence. This study not only paves the way toward anionic aluminum clusters but also reveals their potential application in water treatment of cationic metal ions capture.
Keyphrases
  • quantum dots
  • single molecule
  • energy transfer
  • mycobacterium tuberculosis
  • high resolution
  • aqueous solution
  • water soluble
  • signaling pathway
  • climate change