Microstructure and Texture Evolution in Cold-Rolled and Annealed Oxygen-Free Copper Sheets.
Jing QinXun LiDongsheng WangChen ZhouTongsheng HuJingwen WangYouwen YangYujun HuPublished in: Materials (Basel, Switzerland) (2024)
Commercial oxygen-free copper sheets were cold-rolled with reduction rates ranging from 20% to 87% and annealed at 400, 500 and 600 °C. The microstructure and texture evolution during the cold-rolling and annealing processes were studied using optical microscopy (OM), scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD). The results show that the deformation textures of {123}<634> (S), {112}<111> (Copper) and {110}<112> (Brass) were continuously enhanced with the increase in cold-rolling reduction. The orientations along the α-oriented fiber converged towards Brass, and the orientation density of β fiber obviously increased when the rolling reduction exceeded 60%. The recrystallization texture was significantly affected by the cold-rolling reduction. After 60% cold-rolling reduction, Copper and S texture components gradually decreased, and the {011}<511> recrystallization texture component formed with the increase in annealing temperature. After 87% cold-rolling reduction, a strong Cube texture formed, and other textures were inhibited with the increase in annealing temperature. The strong Brass and S deformation texture was conducive to the formation of a strong Cube annealing texture. The density of the annealing twin boundary decreased with the increase in annealing temperature, and more annealing twin boundaries formed in the oxygen-free copper sheets with the increase in cold-rolling reduction.