Login / Signup

Cytotoxicity of white birch bud extracts: Perspectives for therapy of tumours.

Valery A IsidorovŁukasz SzokaJolanta Nazaruk
Published in: PloS one (2018)
Birch buds (Gemmae Betulae) are widely used in Russian and Chinese traditional medicine mainly as a diuretic and diaphoretic agent but also as an antiseptic, anti-inflammatory and analgesic. Despite the long history of therapeutic use of birch buds in folk medicine, the existing information on their chemical composition and pharmacological effects is insufficient. This circumstance warrants further study of the chemistry and pharmacology of birch buds. The present study was designed to investigate (a) the chemical composition of buds from two species of white birch and (b) the in vitro cytotoxic effect of extracts from these sources on selected tumour cells. Extracts from Betula pubescens Ehrh. and Betula pendula Roth. buds were obtained using three different methods: carbon dioxide supercritical fluid extraction (SFE), washing of exudate covering whole buds, and extraction of milled buds with diethyl ether. The chemical composition of extracts was investigated by GC-MS. Cytotoxicity was determined by MTT assay, and cell proliferation was determined by [3H]thymidine uptake in cancer cells and normal skin fibroblasts. The GC-MS investigation identified a total of 150 substances of different classes. The chemical composition of B. pubescens and B. pendula buds differed, with bud extracts from the former containing a relatively high quantity of sesquiterpenoids and flavonoids, while the main components of extracts from the latter were triterpenoids. The results of the biological assay indicated that birch bud extracts demonstrated time- and concentration-dependent and differential cytotoxicity. The highest cytotoxic activity demonstrated bud exudates and SFE extracts obtained from both Betula species. The rich chemical composition of birch buds suggests the possibility of a wider spectrum of biological activity than previously thought. Birch bud extracts could be a promising source of compounds with cytotoxic activity against various cancers.
Keyphrases