Mechanoredox Catalysis Enables a Sustainable and Versatile Reversible Addition-Fragmentation Chain Transfer Polymerization Process.
Progyateg ChakmaSarah M ZeitlerFábio BaumJiatong YuWaseem ShindyLilo D PozzoMatthew R GolderPublished in: Angewandte Chemie (International ed. in English) (2022)
The sustainable synthesis of macromolecules with control over sequence and molar mass remains a challenge in polymer chemistry. By coupling mechanochemistry and electron-transfer processes (i.e., mechanoredox catalysis), an energy-conscious controlled radical polymerization methodology is realized. This work explores an efficient mechanoredox reversible addition-fragmentation chain transfer (RAFT) polymerization process using mechanical stimuli by implementing piezoelectric barium titanate and a diaryliodonium initiator with minimal solvent usage. This mechanoredox RAFT process demonstrates exquisite control over poly(meth)acrylate dispersity and chain length while also showcasing an alternative to the solution-state synthesis of semifluorinated polymers that typically utilize exotic solvents and/or reagents. This chemistry will find utility in the sustainable development of materials across the energy, biomedical, and engineering communities.