Login / Signup

Ultrasensitive Carbon Monoxide Gas Sensor at Room Temperature Using Fluorine-Graphdiyne.

Kim My TranJunoh ShimHyung-Kun LeeSohyeon SeoSurajit HaldarHyoyoung Lee
Published in: ACS applied materials & interfaces (2023)
Currently, most carbon monoxide (CO) gas sensors work at high temperatures of over 150 °C. Developing CO gas sensors that operate at room temperature is challenging because of the sensitivity trade-offs. Here, we report an ultrasensitive CO gas sensor at room temperature using fluorine-graphdiyne (F-GDY) in which electrons are increased by light. The GDY films used as channels of field-effect transistors were prepared by using chemical vapor deposition and were characterized by using various spectroscopic techniques. With exposure to UV light, F-GDY showed a more efficient photodoping effect than hydrogen-graphdiyne (H-GDY), resulting in a larger negative shift in the charge neutral point (CNP) to form an n-type semiconductor and an increase in the Fermi level from -5.27 to -5.01 eV. Upon CO exposure, the negatively shifted CNP moved toward a positive shift, and the electrical current decreased, indicating electron transfer from photodoped GDYs to CO. Dynamic sensing experiments demonstrated that negatively charged F-GDY is remarkably sensitive to an electron-deficient CO gas, even with a low concentration of 200 parts per billion. This work provides a promising solution for enhancing the CO sensitivity at room temperature and expanding the application of GDYs in electronic devices.
Keyphrases
  • room temperature
  • ionic liquid
  • electron transfer
  • gold nanoparticles
  • quantum dots
  • computed tomography
  • low cost
  • molecularly imprinted
  • solar cells
  • solid state
  • visible light