Engineering Metal-spxy Dirac Bands on the Oxidized SiC Surface.
Felipe Crasto de LimaRoberto H MiwaPublished in: Nano letters (2020)
The ability to construct 2D systems, beyond materials' natural formation, enriches the search and control capability of new phenomena, for instance, the synthesis of topological lattices of vacancies on metal surfaces through scanning tunneling microscopy. In the present study, we demonstrate that metal atoms encaged in a silicate adlayer on silicon carbide is an interesting platform for lattice design, providing a ground to experimentally construct tight-binding models on an insulating substrate. Based on the density functional theory, we have characterized the energetic and electronic properties of 2D metal lattices embedded in the silica adlayer. We show that the characteristic band structures of those lattices are ruled by surface states induced by the metal-s orbitals coupled by the host-pxy states, giving rise to spxy Dirac bands neatly lying within the energy gap of the semiconductor substrate.