Login / Signup

High activity of step sites on Pd nanocatalysts in electrocatalytic dechlorination.

Yao-Yin LouChi XiaoJiayi FangTian ShengLifei JiQizheng ZhengBin-Bin XuNa TianShi-Gang Sun
Published in: Physical chemistry chemical physics : PCCP (2022)
The role of step sites on nanocatalysts in the electrocatalytic dechlorination reaction (ECDR) was studied using 3 Pd nanocatalysts with different densities of step sites, which decreased in the order of: tetrahexahedral Pd{310} nanocrystals (THH Pd{310} NCs) > commercial Pd nanoparticles (Pd black) > cubic Pd{100} NCs. The two well-defined Pd NCs served as model catalysts and were prepared through the electrochemical square-wave potential (SWP) method. The toxic herbicide alachlor was first employed in this study as an objective probe to determine the dechlorination performance, which was quantified by the alachlor removal ( R ala ), the current efficiency (CE ala ), and the dechlorination selectivity ( S des ). The experimental results demonstrated that the THH Pd{310} NCs with abundant step sites exhibited much higher electrocatalytic performance compared to the cubic Pd{100} NCs with terrace sites. The combination of cyclic voltammetry studies, electrochemical in situ FTIR analysis, and density functional theory (DFT) calculations revealed that the adsorbed CO bond and generated on the step sites could lower the C-Cl bond splitting barrier, leading to a high ECDR efficiency. Other chlorinated organics with an activated carbon atom were also investigated, which revealed that the superiority of the step sites toward Cl-C bond breaking was particular to the compounds with CO bonds. This study provides a deep understanding of high actvitiy of step sites on Pd NCs in EHDC and a strategy to improve this important environmental electrocatalysis process.
Keyphrases