Login / Signup

Development of VHL-recruiting STING PROTACs that suppress innate immunity.

Zhichuan ZhuRebecca L JohnsonZhigang ZhangLaura E HerringGuochun JiangBlossom DamaniaLindsey I JamesPengda Liu
Published in: Cellular and molecular life sciences : CMLS (2023)
STING acts as a cytosolic nucleotide sensor to trigger host defense upon viral or bacterial infection. While STING hyperactivation can exert anti-tumor effects by increasing T cell filtrates, in other contexts hyperactivation of STING can contribute to autoimmune and neuroinflammatory diseases. Several STING targeting agonists and a smaller subset of antagonists have been developed, yet STING targeted degraders, or PROTACs, remain largely underexplored. Here, we report a series of STING-agonist derived PROTACs that promote STING degradation in renal cell carcinoma (RCC) cells. We show that our STING PROTACs activate STING and target activated/phospho-STING for degradation. Locking STING on the endoplasmic reticulum via site-directed mutagenesis disables STING translocation to the proteasome and resultingly blocks STING degradation. We also demonstrate that PROTAC treatment blocks downstream innate immune signaling events and attenuates the anti-viral response. Interestingly, we find that VHL acts as a bona fide E3 ligase for STING in RCC; thus, VHL-recruiting STING PROTACs further promote VHL-dependent STING degradation. Our study reveals the design and biological assessment of VHL-recruiting agonist-derived STING PROTACs, as well as demonstrates an example of hijacking a physiological E3 ligase to enhance target protein degradation via distinct mechanisms.
Keyphrases
  • sars cov
  • innate immune
  • endoplasmic reticulum
  • oxidative stress
  • binding protein
  • induced apoptosis
  • drug induced
  • amino acid