Twisting of 2D Kagomé Sheets in Layered Intermetallics.
Mekhola SinhaHector K VivancoCheng WanMaxime A SieglerVeronica J StewartElizabeth A PogueLucas A PressleyTanya BerryZiqian WangIsaac JohnsonMingwei ChenT Thao TranW Adam PhelanTyrel M McQueenPublished in: ACS central science (2021)
Chemical bonding in 2D layered materials and van der Waals solids is central to understanding and harnessing their unique electronic, magnetic, optical, thermal, and superconducting properties. Here, we report the discovery of spontaneous, bidirectional, bilayer twisting (twist angle ∼4.5°) in the metallic kagomé MgCo6Ge6 at T = 100(2) K via X-ray diffraction measurements, enabled by the preparation of single crystals by the Laser Bridgman method. Despite the appearance of static twisting on cooling from T ∼300 to 100 K, no evidence for a phase transition was found in physical property measurements. Combined with the presence of an Einstein phonon mode contribution in the specific heat, this implies that the twisting exists at all temperatures but is thermally fluctuating at room temperature. Crystal Orbital Hamilton Population analysis demonstrates that the cooperative twisting between layers stabilizes the Co-kagomé network when coupled to strongly bonded and rigid (Ge2) dimers that connect adjacent layers. Further modeling of the displacive disorder in the crystal structure shows the presence of a second, Mg-deficient, stacking sequence. This alternative stacking sequence also exhibits interlayer twisting, but with a different pattern, consistent with the change in electron count due to the removal of Mg. Magnetization, resistivity, and low-temperature specific heat measurements are all consistent with a Pauli paramagnetic, strongly correlated metal. Our results provide crucial insight into how chemical concepts lead to interesting electronic structures and behaviors in layered materials.
Keyphrases
- room temperature
- crystal structure
- high resolution
- solar cells
- reduced graphene oxide
- highly efficient
- mental health
- small molecule
- physical activity
- ionic liquid
- high speed
- molecularly imprinted
- epithelial mesenchymal transition
- high throughput
- machine learning
- big data
- transition metal
- gold nanoparticles
- magnetic resonance imaging
- artificial intelligence
- liquid chromatography
- solid phase extraction