Login / Signup

Machine Learning for Bridging the Gap between Density Functional Theory and Coupled Cluster Energies.

Marcel RuthDennis GerbigPeter Richard Schreiner
Published in: Journal of chemical theory and computation (2023)
Accurate electronic energies and properties are crucial for successful reaction design and mechanistic investigations. Computing energies and properties of molecular structures has proven extremely useful, and, with increasing computational power, the limits of high-level approaches (such as coupled cluster theory) are expanding to ever larger systems. However, because scaling is highly unfavorable, these methods are still not universally applicable to larger systems. To address the need for fast and accurate electronic energies of larger systems, we created a database of around 8000 small organic monomers (2000 dimers) optimized at the B3LYP-D3(BJ)/cc-pVTZ level of theory. This database also includes single-point energies computed at various levels of theory, including PBE1PBE, ωΒ97Χ, M06-2X, revTPSS, B3LYP, and BP86, for density functional theory as well as DLPNO-CCSD(T) and CCSD(T) for coupled cluster theory, all in conjunction with a cc-pVTZ basis. We used this database to train machine learning models based on graph neural networks using two different graph representations. Our models are able to make energy predictions from B3LYP-D3(BJ)/cc-pVTZ inputs to CCSD(T)/cc-pVTZ outputs with a mean absolute error of 0.78 and to DLPNO-CCSD(T)/cc-pVTZ with an mean absolute error of 0.50 and 0.18 kcal mol -1 for monomers and dimers, respectively. The model for dimers was further validated on the S22 database, and the monomer model was tested on challenging systems, including those with highly conjugated or functionally complex molecules.
Keyphrases