Login / Signup

Enhanced Lithium Ion Transport in Poly(ethylene glycol) Diacrylate-Supported Solvate Ionogel Electrolytes via Chemically Cross-linked Ethylene Oxide Pathways.

Anthony J D'AngeloMatthew J Panzer
Published in: The journal of physical chemistry. B (2017)
Lithium-ion solvate ionic liquids (SILs), consisting of complexed Li+ cations and a weakly basic anion, represent an emergent class of nonvolatile liquid electrolytes suitable for lithium-based electrochemical energy storage. In this report, solid-state, flexible solvate ionogel electrolytes are synthesized via UV-initiated free radical polymerization/cross-linking of poly(ethylene glycol) diacrylate (PEGDA) in situ within the [Li(G4)][TFSI] electrolyte, which is formed by an equimolar mixture of lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and tetraglyme (G4). Ion diffusivity measurements reveal enhanced Li+ diffusion in PEGDA-supported solvate ionogels, as compared to poly(methyl methacrylate)-supported gels that lack ethylene oxide chains. At 21 vol% PEGDA, a maximum Li+ transport number of 0.58 and a room temperature ionic conductivity of 0.43 mS/cm have been achieved in a solvate ionogel electrolyte that exhibits an elastic modulus of 0.47 MPa. These results demonstrate the importance of polymer scaffold selection on solvate ionogel electrolyte performance for advanced lithium-based batteries.
Keyphrases
  • ionic liquid
  • solid state
  • room temperature
  • multiple sclerosis
  • genome wide
  • gene expression
  • molecularly imprinted
  • label free
  • solid phase extraction
  • oxide nanoparticles