Novel 2-(Adamantan-1-ylamino)Thiazol-4(5H)-One Derivatives and Their Inhibitory Activity towards 11β-HSD1-Synthesis, Molecular Docking and In Vitro Studies.
Renata StudzińskaDaria KupczykWojciech PłazińskiSzymon BaumgartRafał BilskiRenata PaprockaRenata KołodziejskaPublished in: International journal of molecular sciences (2021)
A common mechanism in which glucocorticoids participate is suggested in the pathogenesis of such metabolic diseases as obesity, metabolic syndrome, or Cushing's syndrome. The enzyme involved in the control of the availability of cortisol, the active form of the glucocorticoid for the glucocorticoid receptor, is 11β-HSD1. Inhibition of 11β-HSD1 activity may bring beneficial results for the alleviation of the course of metabolic diseases such as metabolic syndrome, Cushing's syndrome or type 2 diabetes. In this work, we obtained 10 novel 2-(adamantan-1-ylamino)thiazol-4(5H)-one derivatives containing different substituents at C-5 of thiazole ring and tested their activity towards inhibition of two 11β-HSD isoforms. For most of them, over 50% inhibition of 11β-HSD1 and less than 45% inhibition of 11β-HSD2 activity at the concentration of 10 µM was observed. The binding energies found during docking simulations for 11β-HSD1 correctly reproduced the experimental IC50 values for analyzed compounds. The most active compound 2-(adamantan-1-ylamino)-1-thia-3-azaspiro[4.5]dec-2-en-4-one (3i) inhibits the activity of isoform 1 by 82.82%. This value is comparable to the known inhibitor-carbenoxolone. The IC50 value is twice the value determined by us for carbenoxolone, however inhibition of the enzyme isoform 2 to a lesser extent makes it an excellent material for further tests.