Login / Signup

Tracking the Dissolution Surface Kinetics of a Single Fluorescent Cyclodextrin Metal-Organic Framework by Confocal Laser Scanning Microscopy.

Wenshuai ZhouYanlong FengMeng LiChengxiao ZhangHonglan Qi
Published in: Langmuir : the ACS journal of surfaces and colloids (2023)
The understanding of the dissolution processes of solids is important for the design and synthesis of solids in a controlled and precise manner and for predicting their fate in the aquatic environment. We report herein single-particle-based confocal laser scanning microscopy (CLSM) for tracking the dissolution surface kinetics of a single fluorescent cyclodextrin metal-organic framework (CD-MOF). As a proof of concept, CD-MOF containing fluorescein, named as CD-MOF⊃FL, was synthesized by encapsulating fluorescein into the interior of CD-MOF via a vapor diffusion method and used as a single-particle dissolution model because of its high FL efficiency and unique structure. The morphology of CD-MOF⊃FL and the distribution of fluorescein within CD-MOF⊃FL were characterized. The growth and dissolution processes of CD-MOF⊃FL at the single-particle level were visualized and quantified for the first time by recording the change of the fluorescence emission. Three processes, including nucleation, germination growth, and saturation stage, were found in the growth of CD-MOF⊃FL, and the growth kinetics followed Avrami's model. The dissolution rate at the face of a single CD-MOF⊃FL crystal was slower than that of its arris, and the dissolution rate of the CD-MOF⊃FL crystal was increased with the increase of the water amount in methanol solution. The dissolution process of the CD-MOF⊃FL crystal was a competitive process of erosion and diffusion in different methanol aqueous solutions, and the dissolution kinetics followed the Korsmeyer-Peppas model. These results offer new insights into the nature of dissolution kinetics of CD-MOF⊃FL and provide new venues for the quantitative analysis of solid dissolution and growth at the single-particle level.
Keyphrases
  • metal organic framework
  • nk cells
  • high resolution
  • optical coherence tomography
  • high speed
  • ionic liquid
  • aqueous solution