Login / Signup

Fluctuations in population fecundity drive variation in demographic connectivity and metapopulation dynamics.

Max C N CastoraniDaniel C ReedPeter T RaimondiFilipe AlbertoTom W BellKyle C CavanaughDavid A SiegelRachel D Simons
Published in: Proceedings. Biological sciences (2018)
Demographic connectivity is vital to sustaining metapopulations yet often changes dramatically through time due to variation in the production and dispersal of offspring. However, the relative importance of variation in fecundity and dispersal in determining the connectivity and dynamics of metapopulations is poorly understood due to the paucity of comprehensive spatio-temporal data on these processes for most species. We quantified connectivity in metapopulations of a marine foundation species (giant kelp Macrocystis pyrifera) across 11 years and approximately 900 km of coastline by estimating population fecundity with satellite imagery and propagule dispersal using a high-resolution ocean circulation model. By varying the temporal complexity of different connectivity measures and comparing their ability to explain observed extinction-colonization dynamics, we discovered that fluctuations in population fecundity, rather than fluctuations in dispersal, are the dominant driver of variation in connectivity and contribute substantially to metapopulation recovery and persistence. Thus, for species with high variability in reproductive output and modest variability in dispersal (most plants, many animals), connectivity measures ignoring fluctuations in fecundity may overestimate connectivity and likelihoods of persistence, limiting their value for understanding and conserving metapopulations. However, we demonstrate how connectivity measures can be simplified while retaining utility, validating a practical solution for data-limited systems.
Keyphrases