Regulating Zinc Nucleation Sites and Electric Field Distribution to Achieve High-Performance Zinc Metal Anode via Surface Texturing.
Zhenrui WuJian ZouYihu LiEvan J HansenDan SunHai-Yan WangLiping WangJian LiuPublished in: Small (Weinheim an der Bergstrasse, Germany) (2022)
Understanding zinc (Zn) deposition behavior and improving Zn stripping and plating reversibility are significant in developing practical aqueous Zn ion batteries (AZIBs). Zn metal is abundant, cost-effective, and intrinsically safe compared with Li. However, their similar inhomogeneous growth regime harms their practicality. This work reports a facile, easily scalable, but effective method to develop a textured Zn with unidirectional scratches on the surface that electrochemically achieves a high accumulated areal capacity of 5530 mAh cm -2 with homogenized Zn deposition. In symmetric cells, textured Zn presents a stable cycling performance of 1100 hours (vs 250 h of bare Zn) at 0.5 mA cm -2 for 0.5 mAh cm -2 and lower nucleation and plating overpotentials of 120.5 and 41.8 mV. In situ optical microscopy and COMSOL simulation disclose that the textured surface topography can 1) homogenize the electron field distribution on the Zn surface and regulate Zn nucleation and growth, and 2) provides physical space to accommodate Zn deposits, prevent the detachment of "dead" Zn, and improve the structural sufficiency of Zn anode. Moreover, differential electrochemical mass spectrometry analysis find that the textured Zn with regulated interfacial electron activity also presents a higher resistance toward hydrogen evolution and other parasitic reactions.