Login / Signup

Comparison of Estimated LDL Cholesterol Equations with Direct Measurement in Patients with Angiographically Confirmed Coronary Artery Disease.

Boqun ShiHao Yu WangDong YinChenggang ZhuLei FengHongjian WangLei JiaRui FuChenxi SongZhou ZhouYahui LinWeihua SongKe-Fei Dou
Published in: Journal of cardiovascular development and disease (2022)
Background and aims: Our goals in the study were to (1) quantify the discordance in LDL-C levels between equations (the Friedewald, Sampson, and Martin/Hopkins equations) and compare them with direct LDL-C (dLDL-C); and (2) explore the proportion of misclassified patients by calculated LDL-C using these three different equations. Methods: A total of 30,349 consecutive patients with angiographically confirmed coronary artery disease (CAD) were prospectively enrolled. Concordance was defined as if the LDL-C was <1.8 mmol/L with each pairwise comparison of LDL-C equations. Estimated LDL-C that fell into the same category as dLDL-C at the following levels: <1.4, 1.4 to 1.7, 1.8 to 2.5, 2.6 to 2.9, and ≥3.0 mmol/L was considered to have been correctly categorized. Results: The concordance was 96.3% (Sampson vs. Martin/Hopkins), 95.0% (Friedewald vs. Sampson), and 91.4% (Friedewald vs. Martin/Hopkins), respectively. This proportion fell to 82.4% in those with hypertriglyceridemia (TG ≥ 1.7 mmol/L). With an accurate classification rate of 73.6%, the Martin/Hopkins equation outperformed the Sampson equation (69.5%) and the Friedewald equation (59.3%) by a wide margin. Conclusions: Comparing it to the validated Martin/Hopkins equation, the Friedewald equation produced the lowest levels of LDL-C, followed by the Sampson equation. In the classification of LDL-C, the Martin/Hopkins equation has also been shown to be more accurate. There is a significant difference between the equations and the direct measurement method, which may lead to overtreatment or undertreatment.
Keyphrases