Login / Signup

A survey of extended-spectrum beta-lactamase-producing Enterobacteriaceae in urban wetlands in southwestern Nigeria as a step towards generating prevalence maps of antimicrobial resistance.

Olawale Olufemi AdelowoOdion Osebhahiemen IkhimiukorCamila KnechtJohn VollmersMudit BhatiaAnne-Kirstin KasterJochen A Müller
Published in: PloS one (2020)
In many countries, emission of insufficiently treated wastewater into water bodies appears to be an important factor in spreading clinically relevant antimicrobial resistant bacteria. In this study, we looked for the presence of Enterobacteriaceae strains with resistance to 3rd generation cephalosporin antibiotics in four urban wetlands in southwestern Nigeria by isolation, whole genome sequencing and qPCR enumeration of marker genes. Genome analysis of multi-drug resistant and potentially pathogenic Escherichia coli isolates (members of the widely distributed ST10 complex) revealed the presence of the extended spectrum beta-lactamase gene blaCTX-M-15 on self-transmissible IncF plasmids. The gene was also present together with a blaTEM-1B gene on self-transmissible IncH plasmids in multi-drug resistant Enterobacter cloacae isolates. A Citrobacter freundii isolate carried blaTEM-1B on an IncR-type plasmid without discernable conjugation apparatus. All strains were isolated from a wetland for which previous qPCR enumeration of marker genes, in particular the ratio of intI1 to 16S rRNA gene copy numbers, had indicated a strong anthropogenic impact. Consistent with the isolation origin, qPCR analysis in this study showed that the blaCTX-M gene was present at an abundance of 1x10-4 relative to bacterial 16S rRNA gene copy numbers. The results indicate that contamination of these urban aquatic ecosystems with clinically relevant antibiotic resistant bacteria is substantial in some areas. Measures should therefore be put in place to mitigate the propagation of clinically relevant antimicrobial resistance within the Nigerian aquatic ecosystems.
Keyphrases