Login / Signup

Alleviating Pyroptosis of Intestinal Epithelial Cells to Restore Mucosal Integrity in Ulcerative Colitis by Targeting Delivery of 4-Octyl-Itaconate.

Wenying LiDong ChenYanmei ZhuQiange YeYang HuaPing JiangYing XiangYuejie XuYinya PanHua YangYichun MaHang XuCheng ZhaoChang ZhengChangrong ChenYun ZhuGuifang Xu
Published in: ACS nano (2024)
Current therapies primarily targeting inflammation often fail to address the root relationship between intestinal mucosal integrity and the resulting dysregulated cell death and ensuing inflammation in ulcerative colitis (UC). First, UC tissues from human and mice models in this article both emphasize the crucial role of Gasdermin E (GSDME)-mediated pyroptosis in intestinal epithelial cells (IECs) as it contributes to colitis by releasing proinflammatory cytokines, thereby compromising the intestinal barrier. Then, 4-octyl-itaconate (4-OI), exhibiting potential for anti-inflammatory activity in inhibiting pyroptosis, was encapsulated by butyrate-modified liposome (4-OI/BLipo) to target delivery for IECs. In brief, 4-OI/BLipo exhibited preferential accumulation in inflamed colonic epithelium, attributed to over 95% of butyrate being produced and absorbed in the colon. As expected, epithelium barriers were restored significantly by alleviating GSDME-mediated pyroptosis in colitis. Accordingly, the permeability of IECs was restored, and the resulting inflammation, mucosal epithelium, and balance of gut flora were reprogrammed, which offers a hopeful approach to the effective management of UC.
Keyphrases