Elucidating activation and deactivation dynamics of VEGFR-2 transmembrane domain with coarse-grained molecular dynamics simulations.
Yeon Ju GoMahroof KalathingalYoung Min RheePublished in: PloS one (2023)
The vascular endothelial growth factor receptor 2 (VEGFR-2) is a member of receptor tyrosine kinases (RTKs) and is a dimeric membrane protein that functions as a primary regulator of angiogenesis. As is usual with RTKs, spatial alignment of its transmembrane domain (TMD) is essential toward VEGFR-2 activation. Experimentally, the helix rotations within TMD around their own helical axes are known to participate importantly toward the activation process in VEGFR-2, but the detailed dynamics of the interconversion between the active and inactive TMD forms have not been clearly elucidated at the molecular level. Here, we attempt to elucidate the process by using coarse grained (CG) molecular dynamics (MD) simulations. We observe that inactive dimeric TMD in separation is structurally stable over tens of microseconds, suggesting that TMD itself is passive and does not allow spontaneous signaling of VEGFR-2. By starting from the active conformation, we reveal the mechanism of TMD inactivation through analyzing the CG MD trajectories. We observe that interconversions between a left-handed overlay and a right-handed one are essential for the process of going from an active TMD structure to the inactive form. In addition, our simulations find that the helices can rotate properly when the overlaying structure of the helices interconverts and when the crossing angle of the two helices changes by larger than ~40 degrees. As the activation right after the ligand attachment on VEGFR-2 will take place in the reverse manner of this inactivation process, these structural aspects will also appear importantly for the activation process. The rather large change in helix configuration for activation also explains why VEGFR-2 rarely self-activate and how the activating ligand structurally drive the whole VEGFR-2. This mechanism of TMD activation / inactivation within VEGFR-2 may help in further understanding the overall activation processes of other RTKs.