A thermoresponsive gel photoreleasing nitric oxide for potential ocular applications.
Mimimorena SeggioAndré Luiz TessaroAntonia NostroGiovanna GinestraAdriana C E GrazianoVenera CardileStefano AciernoPietro RussoOvidio CatanzanoFabiana QuagliaSalvatore SortinoPublished in: Journal of materials chemistry. B (2020)
We report herein the design, preparation, characterization and biological evaluation of a thermoresponsive gel based on binary mixtures of Pluronic® co-polymers F127 and P123, the latter being covalently functionalized with a nitric oxide (NO) photodonor (NOPD). The weight ratio between the two polymeric components is optimized in order to observe gelation of their saline water solution in the range of 32-35 °C, in order to exploit the therapeutic properties of NO for potential ocular applications. Rheological measurements were performed to evaluate the gelation temperature and, hence, to select a co-polymer mixture specifically appropriate for the reference application. Integration of the NOPD into the polymeric scaffold does not affect its rheological and spectroscopic properties, making it a good absorber of visible light both in solution and in the gel phase. Irradiation of the saline solution of the polymeric components with visible light triggers NO release, which occurs with an efficiency of more than one order of magnitude faster than that observed for the isolated NOPD. The polymeric system fully preserves such photobehavior after gelation as demonstrated by the effective NO photorelease from the gel matrix and its diffusion in the supernatant upon illumination. The gel is well-tolerated in both dark and light conditions by corneal cells, while being able to induce growth inhibition towards Staphylococcus aureus under visible light irradiation and has high moduli which can contribute to an adequate retention time within the eyes.
Keyphrases
- visible light
- nitric oxide
- drug delivery
- wound healing
- cancer therapy
- staphylococcus aureus
- drug release
- hyaluronic acid
- induced apoptosis
- optical coherence tomography
- body mass index
- physical activity
- ionic liquid
- cell cycle arrest
- weight loss
- signaling pathway
- molecular docking
- oxidative stress
- molecularly imprinted
- climate change
- radiation induced
- optic nerve
- human health
- escherichia coli
- endoplasmic reticulum stress
- cell death
- cell free
- pi k akt
- cataract surgery