Login / Signup

N-carboxyacyl and N-α-aminoacyl derivatives of aminoaldehydes as shared substrates of plant aldehyde dehydrogenases 10 and 7.

Michaela MasopustováAdam GogaMiroslav SouralMartina KopečnáMarek Šebela
Published in: Amino acids (2024)
Aldehyde dehydrogenases (ALDHs) represent a superfamily of enzymes, which oxidize aldehydes to the corresponding acids. Certain families, namely ALDH9 and ALDH10, are best active with ω-aminoaldehydes arising from the metabolism of polyamines such as 3-aminopropionaldehyde and 4-aminobutyraldehyde. Plant ALDH10s show broad specificity and accept many different aldehydes (aliphatic, aromatic and heterocyclic) as substrates. This work involved the above-mentioned aminoaldehydes acylated with dicarboxylic acids, phenylalanine, and tyrosine. The resulting products were then examined with native ALDH10 from pea and recombinant ALDH7s from pea and maize. This investigation aimed to find a common efficient substrate for the two plant ALDH families. One of the best natural substrates of ALDH7s is aminoadipic semialdehyde carrying a carboxylic group opposite the aldehyde group. The substrate properties of the new compounds were demonstrated by mass spectrometry of the reaction mixtures, spectrophotometric assays and molecular docking. The N-carboxyacyl derivatives were good substrates of pea ALDH10 but were only weakly oxidized by the two plant ALDH7s. The N-phenylalanyl and N-tyrosyl derivatives of 3-aminopropionaldehyde were good substrates of pea and maize ALDH7. Particularly the former compound was converted very efficiently (based on the k cat /K m ratio), but it was only weakly oxidized by pea ALDH10. Although no compound exhibited the same level of substrate properties for both ALDH families, we show that these enzymes may possess more common substrates than expected.
Keyphrases
  • molecular docking
  • mass spectrometry
  • high throughput
  • high resolution
  • molecular dynamics simulations
  • transcription factor
  • structural basis