In silico drug discovery of IKK-β inhibitors from 2-amino-3-cyano-4-alkyl-6-(2-hydroxyphenyl) pyridine derivatives based on QSAR, docking, molecular dynamics and drug-likeness evaluation studies.
Nour-El-Houda HammoudiYacine BenguerbaAyoub AttouiCecilia HognonTarek LemaouiWidad SobhiMohamed BenaichaMichael BadawiAntonio MonariPublished in: Journal of biomolecular structure & dynamics (2020)
The Inhibitor of IKK-β (nuclear factor kappa B kinase subunit beta), a specific modulator of NF-κB (nuclear factor-κB), is considered a valid target to discover new active compounds for various cancers and rheumatoid arthritis treatment. In this study a series of thirty 2-amino-3-cyano-4-alkyl-6-(2-hydroxyphenyl) pyridine derivatives was involved for a quantitative structure activity relationship model (QSAR) elaboration which allows the prediction of the pIC50 values of new designed compounds. The model can be used to predict the activity of new compounds within its applicability domain. Then a molecular docking study was carried out to identify the interactions between the compounds and the amino acids of the active site. After that, golden triangle, Veber's rule, and Lipinski's rule properties were calculated to identify the drug-likeness properties of the investigated compounds. Finally, in-silico-toxicity studies were performed to predict the toxicity of the new designed compounds. The analysis of the results of QSAR model and molecular docking succeeded to screen 21 interesting compounds with better inhibitory concentration having a good affinity to IKK-β. All compounds were within the range set by Veber's rule and Lipinski's rule. the analysis of golden triangle showed that the thirty 2-amino-3-cyano-4-alkyl-6-(2-hydroxyphenyl) pyridine derivatives would not have clearance and cell membrane permeability problems except comp6 comp12,comp20, comp21, and comp26.As for the new designed compounds, their properties may have these problems, except two compounds which are: A8m, A8p. The A1m, A1p, A3p and A11m compounds were predicted to be nontoxic. These findings indicate that the novel potent candidate drugs have promising potential to IKK-β enzyme inhibition and should motivate future experimental investigations.Communicated by Ramaswamy H. Sarma.
Keyphrases
- molecular docking
- nuclear factor
- molecular dynamics
- structure activity relationship
- molecular dynamics simulations
- rheumatoid arthritis
- toll like receptor
- mental health
- oxidative stress
- ionic liquid
- drug discovery
- signaling pathway
- risk assessment
- high resolution
- amino acid
- single cell
- systemic sclerosis
- systemic lupus erythematosus
- electronic health record
- interstitial lung disease
- replacement therapy