A Neural Model of MST and MT Explains Perceived Object Motion during Self-Motion.
Oliver W LaytonBrett R FajenPublished in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2017)
To intercept targets, we must perceive the motion of objects that move independently from us as we move through the environment. Although our self-motion substantially alters the motion of objects on the retina, compelling evidence indicates that the visual system at least partially compensates for self-motion such that object motion relative to the stationary environment can be more accurately perceived. We have developed a model that sheds light on plausible mechanisms within the visual system that transform retinal motion into a world-relative reference frame. Our model reveals how local motion signals (generated through interactions within the middle temporal area) and global motion signals (feedback from the dorsal medial superior temporal area) contribute and offers a new hypothesis about the connection between pathways for heading and object motion perception.