Characterization of Decellularized Plant Leaf as an Emerging Biomaterial Platform.
Junsu YunMina ChoMatthew CulverDaniel P PearceChanul KimColleen M WitzenburgWilliam L MurphyPadma GopalanPublished in: ACS biomaterials science & engineering (2024)
Decellularized plants have emerged as promising biomaterials for cell culture and tissue engineering applications due to their distinct material characteristics. This study explores the biochemical, mechanical, and structural properties of decellularized leaves that make them useful as biomaterials for cell culture. Five monocot leaf species were decellularized via alkali treatment, resulting in the effective removal of DNA and proteins. The Van Soest method was used to quantitatively evaluate the changes in cellulose, hemicellulose, and lignin content during decellularization. Tensile tests revealed considerable variations in mechanical strength depending on the plant species, the decellularization state, and the direction of applied mechanical force. Decellularized monocot leaves exhibited a notable reduction in mechanical strength and anisotropic properties depending on the leaf orientation. Imaging revealed inherent microgrooves on the epidermis of the monocot leaves. Permeability studies, including water uptake and biomolecule transport through decellularized leaves, confirmed excellent water uptake capability but limited biomolecule transport. Lastly, the plants were enzymatically degradable using typical plant enzymes, which were minimally cytotoxic to mammalian cells. Taken together, the features of decellularized plant leaves characterized in this study suggest ways in which they can be useful in cell culture and tissue engineering applications.