Login / Signup

Oxygen metabolism shapes microbial settlement on photosynthetic kelp blades compared to artificial kelp substrates.

Brooke L WeigelCatherine A Pfister
Published in: Environmental microbiology reports (2020)
We examined factors shaping community assembly of the bull kelp (Nereocystis luetkeana) microbiome by comparing microbial biofilm formation on photosynthetic kelp blade tissues and artificial kelp substrates ('agar substrates') deployed into a kelp forest. New kelp blade tissues were colonized by markedly distinct microbial taxa relative to agar substrates during the same time interval, even when agar substrates were infused with N. luetkeana blades, suggesting that microbial settlement onto kelp surfaces is more than just attraction to a polysaccharide-rich surface. Further, common seawater taxa such as Colwellia sp. and Psychromonas sp. became abundant on agar substrates but avoided new kelp blade tissues, indicating that host-specific factors may deter certain surface-associated marine microbial taxa. Over two-thirds of the bacterial taxa in the kelp microbiome were associated with strictly aerobic metabolisms; thus, photosynthetic production of O2 may favour aerobic microbial metabolisms. While living kelp blades primarily recruited aerobic microbes, including the obligate aerobe Granulosicoccus sp., microbes that colonized agar substrates were predominantly facultative anaerobes. We also found that infusion of kelp tissues into agar substrates altered microbial community composition and lowered taxonomic diversity relative to control agar substrates, suggesting that non-living components of the kelp blade also impact microbial community assembly.
Keyphrases