Login / Signup

Orbital Engineering in Sillén-Aurivillius Phase Bismuth Oxyiodide Photocatalysts through Interlayer Interactions.

Kanta OgawaHajime SuzukiAron WalshRyu Abe
Published in: Chemistry of materials : a publication of the American Chemical Society (2023)
Multicomponent inorganic compounds containing post-transition-metal cations such as Sn, Pb, and Bi are a promising class of photocatalysts, but their structure-property relationships remain difficult to decipher. Here, we report three novel bismuth-based layered oxyiodides, the Sillén-Aurivillius phase Bi 4 NbO 8 I, Bi 5 BaTi 3 O 14 I, and Bi 6 NbWO 14 I. We show that the interlayer Bi-Bi interaction is a key to controlling the electronic structure. The replacement of the halide layer from Cl to I negatively shifts not only the valence band but also the conduction band, thus providing lower electron affinity without sacrificing photoabsorption. The suppressed interlayer chemical interaction between the 6p orbitals of the Bi lone-pair cations reduces the conduction bandwidth. These oxyiodides have narrower band gaps and show much higher water oxidation activities under visible light than their chloride counterparts. The design strategy has not only provided three novel Bi-based photocatalysts for water splitting but also offers a pathway to control the optoelectronic properties of a wider class of lone-pair (ns 2 np 0 ) semiconductors.
Keyphrases
  • visible light
  • transition metal
  • solar cells
  • heavy metals
  • risk assessment
  • gold nanoparticles
  • highly efficient
  • molecular dynamics
  • reduced graphene oxide