Login / Signup

Design and construction of IR780- and EGCG-based and mitochondrial targeting nanoparticles and their application in tumor chemo-phototherapy.

Jiahe BaoYinan ZhaoJing XuYuan-Qiang Guo
Published in: Journal of materials chemistry. B (2021)
An integration combination of phototherapy and chemotherapy to treat carcinoma, solving the inner limitation of individual-modal chemical agent-based therapy or phototherapy, emerges to be a strategy with high prospects for achieving synergistic curative effects. The dye IR780-iodide (IR780) close to infrared radiation is a phototherapy agent with high prospects. However, it is limited in its clinical applications due to poor solubility in water. While epigallocatechin-3-gallate (EGCG), naturally resourced green tea polyphenol, has been extensively proven with intrinsic antitumor activity, but it is largely restricted by its low bioavailability in vivo. Hence, novel multiple-function nanoparticles comprising hyaluronic acid (HA) and IR780 were proposed to deliver EGCG, defined as EGCG@THSI nano-scale particles (EGCG@THSI NPs), thereby rapidly solving limitations of EGCG and IR780. Amphiphilic nano-scale carrier was prepared by triphenylphosphine (TPP), hyaluronic acid (HA), cystamine, and IR780, termed as TPP-HA-SS-IR780, and EGCG was loaded into the amphiphilic copolymer by self-assembly. TPP-HA-SS-IR780 endowed the as-synthesized EGCG@THSI NPs with excellent TPP-mediated mitochondrial-targeted and glutathione-triggered rapid drug release properties. As impacted by the integration of phototherapy and chemotherapy, the EGCG@THSI NPs under NIR laser irradiation showed a prominent anti-tumor effect. Taken together, this study presented a multiple-function nano-scale carrier platform with high prospects in improving the therapeutic efficacy of anti-carcinoma drugs.
Keyphrases