Login / Signup

Developing affordable and accessible pro-angiogenic wound dressings; incorporation of 2 deoxy D-ribose (2dDR) into cotton fibres and wax-coated cotton fibres.

Anisa AndleebSerkan DikiciTayyaba Sher WarisMuhammad Mustehsan BashirShahid AkhterAqif Anwar ChaudhrySheila MacNeilMuhammad Yar
Published in: Journal of tissue engineering and regenerative medicine (2020)
The absorption capacity of cotton dressings is a critical factor in their widespread use where they help absorb wound exudate. Cotton wax dressings, in contrast, are used for wounds where care is taken to avoid adhesion of dressings to sensitive wounds such as burn injuries. Accordingly, we explored the loading of 2-deoxy-D-ribose (2dDR), a small sugar, which stimulates angiogenesis and wound healing in normal and diabetic rats, into both types of dressings and measured the release of it over several days. The results showed that approximately 90% of 2dDR was released between 3 and 5 days when loaded into cotton dressings. For wax-coated cotton dressings, several methods of loading of 2dDR were explored. A strategy similar to the commercial wax coating methodology was found the best protocol which provided a sustained release over 5 days. Cytotoxicity analysis of 2dDR loaded cotton dressing showed that the dressing stimulated metabolic activity of fibroblasts over 7 days confirming the non-toxic nature of this sugar-loaded dressings. The results of the chick chorioallantoic membrane (CAM) assay demonstrated a strong angiogenic response to both 2dDR loaded cotton dressing and to 2dDR loaded cotton wax dressings. Both dressings were found to increase the number of newly formed blood vessels significantly when observed macroscopically and histologically. We conclude this study offers a simple approach to developing affordable wound dressings as both have the potential to be evaluated as pro-active dressings to stimulate wound healing in wounds where management of exudate or prevention of adherence to the wounds are clinical requirements.
Keyphrases