Orthogonal cross-coupling through intermolecular metathesis of unstrained C(aryl)-C(aryl) single bonds.
Jun ZhuRui ZhangGuangbin DongPublished in: Nature chemistry (2021)
While metathesis reactions involving carbon-carbon double bonds, namely olefin metathesis, have been well established with broad utility in organic synthesis and materials science, direct metathesis of kinetically less accessible C-C single bonds is extremely rare. Here we report a ruthenium-catalysed reversible C-C single-bond metathesis reaction that allows redox- and pH-neutral biaryl synthesis. Assisted by directing groups, unstrained homo-biaryl compounds undergo aryl exchanges to generate cross-biaryl products, catalysed by a well-defined air-stable ruthenium(II) complex. Functional groups reactive under typical cross-coupling reactions, such as halogen, silyl and boronate moieties, are compatible under the metathesis conditions. Mechanistic studies disclose an intriguing 'olefin-metathesis-like' pathway that involves an unexpected heptacoordinated, 18-electron closed-shell intermediate. The distinct reaction mode discovered here is expected to inspire the development of more general C-C single-bond metathesis and orthogonal cross-coupling reactions.